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Abstract—Images captured under outdoor scenes usually suffer
from low contrast and limited visibility due to suspended atmo-
spheric particles, which directly affects the quality of photos.
Despite numerous image dehazing methods have been proposed,
effective hazy image restoration remains a challenging problem.
Existing learning-based methods usually predict the medium
transmission by Convolutional Neural Networks (CNNs), but
ignore the key global atmospheric light. Different from previous
learning-based methods, we propose a flexible cascaded CNN for
single hazy image restoration, which considers the medium trans-
mission and global atmospheric light jointly by two task-driven
subnetworks. Specifically, the medium transmission estimation
subnetwork is inspired by the densely connected CNN while
the global atmospheric light estimation subnetwork is a light-
weight CNN. Besides, these two subnetworks are cascaded by
sharing the common features. Finally, with the estimated model
parameters, the haze-free image is obtained by the atmospheric
scattering model inversion, which achieves more accurate and
effective restoration performance. Qualitatively and quantita-
tively experimental results on the synthetic and real-world hazy
images demonstrate that the proposed method effectively removes
haze from such images, and outperforms several state-of-the-art
dehazing methods.

Index Terms—Image dehazing, image degradation, image
restoration, convolutional neural networks.

I. INTRODUCTION

DURING recent years, we have witnessed a rapid de-
velopment of wireless network technologies and mobile

devices equipped with various cameras which have revolu-
tionized the way people take and share multimedia content
[1], [2]. However, outdoor images (e.g., Figure 1) often suffer
from low contrast, obscured clarity, and faded colors due to
the floating particles in the atmosphere, such as haze, fog, or
dust, that absorb and scatter light. These degraded outdoor
images not only affect the quality of photos [3] but also limit
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Fig. 1. Several examples of images taken under hazy or foggy scenes.

the applications in urban transportation [4], video analysis [5],
visual surveillance [6], and driving assistance [7]. Therefore,
image dehazing or image defogging has become a promising
research area. Additionally, image dehazing methods also pro-
vide reference values for the underwater image enhancement
and restoration research field [8], [9]. However, it is still a
challenging task since the haze concentration is difficult to
estimate from the unknown depth in the single image.

Single hazy image restoration methods usually need to esti-
mate two key components in the hazy image formation model
(i.e., medium transmission and global atmospheric light). To
achieve these two components, traditional prior-based methods
either try to find new kinds of haze related priors or propose
new ways to use them. However, haze related priors do not
always hold, especially for the varying scenes. By contrast, to
obtain more robust and accurate estimation, the learning-based
methods explore the relations between the hazy images and
the corresponding medium transmission in data-driven manner.
However, most of the learning-based methods estimate the
medium transmission and global atmospheric light separately,
and do not consider the joint relations of them. In addition,
separate estimation for the medium transmission and global
atmospheric light limits the flexibility of previous methods.
Thus, it inspires us to explore the joint relations between
the medium transmission and the global atmospheric light,
and how to directly map an input hazy image to its medium
transmission and global atmospheric light simultaneously in
pure data-driven manner.

Our contributions In this paper, we propose a cascaded
CNN deep model for single image dehazing. Different from
previous prior-based methods, we explore the relations be-
tween the input hazy images and the corresponding medium
transmission in data-driven manner, which achieves more ac-
curate and robust medium transmission. Compared to previous
learning-based methods, to our best knowledge, we are first
that estimate the medium transmission and global atmospheric
light jointly in a cascaded CNN deep model, which advances
in dehazing performance and flexibility. Additionally, com-
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pared with the existing single image dehazing methods, the
proposed method has superior dehazing performance both on
perceptually and quantitatively.

The rest of this paper is organized as follows: Section II
presents the related work. Section III describes the proposed
method in detail. Section IV presents the experimental settings,
investigates the network parameter settings, and gives the ex-
perimental results. Lastly, Section V concludes and discusses
this paper.

II. RELATED WORK

Numerous image dehazing methods have been proposed
in the recent decade [10]. These methods can be roughly
classified into four categories: extra information-based meth-
ods [11]–[14], contrast enhancement-based methods [15]–
[18], prior-based methods [19]–[28], and learning-based
methods [29]–[33]. Though extra information-based meth-
ods can achieve impressive dehazing performance, they
show limitations in real-life applications. In general, contrast
enhancement-based methods produce under or over enhanced
regions, color distortion, and artifacts due to failing to con-
sider the formation principle of the hazy image and image
degradation mechanism. As follows, we mainly introduce the
prior-based and learning-based methods and summarize the
existing problems.

Prior-based methods formulate some restrictions on the
visual characteristics of hazy images to solve an ill-posed
problem, which has made significant progress recently. Dark
channel prior (DCP) method proposed by He et al. [20] is one
of classical prior-based methods, which is based on statistics
that at least one channel has some pixels with very low
intensities in most of non-haze patches. Based on the DCP, the
medium transmission and global atmospheric light are roughly
estimated. Finally, the dehazed image is achieved by the
estimated medium transmission refined by soft matting [35] or
guided filter [36] as well as the estimated global atmospheric
light according to an atmospheric scattering model. Although,
the DCP method can obtain outstanding dehazing results in
most cases, it tends to over-estimate the thickness of haze,
which leads to color casts, especially for the sky regions.
Subsequently, many strategies are applied to enhance the
performance of the original DCP method. Zhu et al. [24]
proposed a simple yet effective prior (i.e., CAP) for image
dehazing. The scene depth from the camera to the object
of a hazy image is modeled in a linear model based on
the CAP where unknown model parameters are estimated
by a supervised learning strategy. Even though prior-based
methods have achieved remarkable progress, they still have
some limitations and need to be further improved. For instance,
their performance is highly contingent on the accuracy of the
estimated medium transmission and global atmospheric light,
which is difficult to achieve when the priors are invalid. In
addition, they also may entail high computation cost, which
makes it infeasible for real-time applications.

With rapid development of learning technology in computer
vision tasks [37], [38], the learning-based methods have been
adopted in image dehazing. For example, Tang et al. [29] ex-
tracted multi-scale handcrafted haze-relevant features, and then

employed random forests regressor [39] to learn the correlation
between the handcrafted features and the medium transmis-
sion. However, these handcrafted features are less effective
and insufficient for some challenging scenes, which limits
its performance. Generally, for the handcrafted features-based
methods, inappropriate feature extraction often leads to poor
dehazing results. Different from the handcrafted features, Cai
et al. [30] proposed a CNN-based image dehazing method,
named DehazeNet, which trained a regressor to predict the
medium transmission. The DehazeNet includes four sequential
operations, i.e., feature extraction, multi-scale mapping, local
extremum, and non-linear regression. The training dataset is
generated by haze-free patches collected from Internet, random
medium transmission value, and fixed global atmospheric light
value (i.e., 1) based on an atmospheric scattering model. With
the optimized network weights, the medium transmission of
an input hazy image can be estimated by network forward
propagation. After that, the guided filtering [36] as post-
processing is used to remove the blocking artifacts of the
estimated medium transmission caused by the patch based
estimation. Additionally, the authors applied an empirical
method to estimate the global atmospheric light. Similar with
DehazeNet [30], Ren et al. [31] designed a multi-scale CNN
for single image dehazing. Recently, Li et al. [33] proposed
an all-in-one deep model for single image dehazing, which
directly generated the clean image using CNN. Additionally,
such all-in-one network architecture has been extended to
the video dehazing [34], which fills in the blank of video
dehazing by deep learning strategies. For CNN-based methods,
the accuracy of the estimated medium transmission and the
dehazing performance need to be further improved, especially
for varying scenes. Moreover, most of CNN-based methods
estimate the global atmospheric light by the empirical meth-
ods, which limits the flexibility of network and the accuracy
of restoration.

III. PROPOSED DEHAZING METHOD

To have a better understanding of our work, we first briefly
review the atmospheric scattering model and then a detailed
introduction of our cascaded CNN framework and the loss
functions used in the optimization is presented. Lastly, we
illustrate how to use the estimated medium transmission and
global atmospheric light to achieve the haze-free image. More
details are introduced as follows.

A. Atmospheric Scattering Model

Haze results from air pollution such as dust, smoke, and
other dry particles that obscure the clarity of sky. Image
captured under hazy or foggy day, only a part of the scene
reflected light reaches the imaging equipment due to the effects
of atmosphere absorption and scattering caused by haze, which
decreases the visibility of scene, introduces the faded colors,
and reduces the visual quality. Figure 2 briefly shows the
formation of a hazy image, which mainly consists of two parts:
direct attenuation and airlight.
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Fig. 2. Hazy image formation based on an atmospheric scattering model.

According to the atmospheric scattering model [40], a hazy
image formation can be described as

I(x) = J(x)t(x) +B(x)(1− t(x)), (1)

where x denotes a pixel, I(x) is the observed image, J(x)
is the haze-free image, B(x) is the global atmospheric light,
and t(x) ∈ [0, 1] is the medium transmission which represents
the percentage of the scene radiance reaching the camera. In
Equation (1), the first term J(x)t(x) is the direct attenuation,
which represents how much the scene reflected light reaches
the camera without scattering in the medium. The second term
B(x)(1−t(x)) is airlight, which results from the scattered light
caused by the ambient illumination and leads to the shift of
the scene colors. The medium transmission t(x) can be further
expressed in an exponential decay term as

t(x) = exp(−βd(x)). (2)

where β is the attenuation coefficient of the atmosphere and
d(x) is the distance from the scene to the camera. The purpose
of single image dehazing is to restore J(x), B(x), and t(x)
from I(x), which is an ill-posed problem.

B. The Proposed Cascaded CNN Framework

We aim to learn a cascaded CNN model that discerns the
statistical relations between the hazy image and the corre-
sponding medium transmission and global atmospheric light.
The specific design of our cascaded CNN is presented in
Figure 3 for a clear explanation.

In Figure 3, the cascaded CNN includes three parts that
one is the shared hidden layers part, which extracts common
features for subsequent subnetworks; one is the global atmo-
spheric light estimation subnetwork, which takes the outputs
of the shared hidden layers part as the inputs to map the global
atmospheric light; one is medium transmission estimation sub-
network, which takes the outputs of the shared hidden layers
part as the inputs to map the medium transmission. By such
network architecture, our cascaded CNN can predict the global
atmospheric light and medium transmission simultaneously.

The shared hidden layers part includes 4 convolutional
layers with filter size of fi×fi×ni = 3×3×16 followed by
ReLU nonlinearity function [41]. Here, fi is the spatial support

of a filter and ni is the number of filters. Since we found that
the task of the global atmospheric light estimation is easy
for CNN, we employ a light-weight CNN architecture for the
global atmospheric light estimation subnetwork. Specifically,
the global atmospheric light estimation subnetwork includes
4 convolutional layers with filter size of 3 × 3 × 8 followed
by ReLU nonlinearity function [41], except for the last one.
The medium transmission estimation subnetwork architecture
is inspired by the densely connected network [42] which stacks
early layers at the end of each block, which strengthens feature
propagation and alleviates the vanishing-gradient problem.
Specifically, the medium transmission estimation subnetwork
includes 7 convolutional layers with filter size of 3 × 3 × 16
followed by ReLU nonlinearity function [41], except for the
last one. The network parameter settings will be discussed
in Section IV. Next, we describe loss functions used in the
cascaded CNN optimization.

C. Loss Functions

For image dehazing problem, most of learning-based meth-
ods employ Mean Squared Error (MSE) loss function for
network optimization. Following previous methods, we also
use MSE loss function for our medium transmission estimation
subnetwork. For the convenience of training, we first assume
that the format of the global atmospheric light is a map
with dimension of M . Moreover, every pixel in the global
atmospheric light map has the same value. Such assumption
is reasonable because previous methods usually assume that
every pixel in the input hazy image has the same global
atmospheric light value. Then, for the global atmospheric
light estimation subnetwork, we first tried MSE loss function,
however, we found that the predicted global atmospheric light
map is inconsistent with our assumption that every pixel in
the input hazy image has the same global atmospheric light
value. Thus, to avoid this problem, we use Structural Similarity
Index (SSIM) loss function [43] for our global atmospheric
light estimation subnetwork, which makes the values in the
predicted global atmospheric light map same.

For the global atmospheric light estimation subnetwork, we
minimize the SSIM loss function between the estimated global
atmospheric light and the global atmospheric light ground
truth. Firstly, the SSIM value for every pixel between the pre-
dicted global atmospheric light Fgal(Ii) and the corresponding
ground truth of the global atmospheric light Bi is calculated
as follows:

SSIM(p) =
2µxµy + C1

µ2
x + µ2

y + C1
· 2σxy + C2

σ2
x + σ2

y + C2
, (3)

where x and y are the corresponding image patches with size
13×13 (default in the SSIM loss function [43]) in the predicted
global atmospheric light and the corresponding ground truth,
respectively. Above, p is the center pixel of image patch, µx

is the mean of x, σx is the standard deviations of x, µy is
the mean of y, σy is the standard deviations of y, σxy is the
covariance between x and y. Using the defaults in the SSIM
loss function [43], we set the values of C1 and C2 to 0.02 and
0.03. In fact, our network is insensitive to those parameters.
Besides, Fgal is the learned global atmospheric light mapping
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Fig. 3. The diagram of the proposed cascaded CNN structure. The cascaded CNN includes three parts: the shared hidden layers part, the global atmospheric
light estimation subnetwork, and the medium transmission estimation subnetwork. In the network diagram, different color blocks represent the different
operations. Red block Conv: convolution; light blue block ReLU: ReLU nonlinearity function; dark green block Concat: concatenation.

function. Ii is the input hazy image. Using Equation (3), the
SSIM loss between the predicted global atmospheric light
Fgal(Ii) and the corresponding ground truth Bi is expressed
as

LSSIM =
1

N

N∑
i=1

(1− 1

M
ΣM

p=1(SSIM(p))), (4)

where N is the number of each batch, M = H ×W is the
dimension of the predicted global atmospheric light.

For the medium transmission estimation subnetwork, we
minimize the MSE loss function between the predicted
medium transmission Fmt(Ii) and the corresponding ground
truth of the medium transmission ti, and is expressed as

LMSE =
1

NHW

N∑
i=1

‖Fmt(Ii)− ti‖2, (5)

where N is the number of each batch, Fmt is the learned
medium transmission mapping function, H×W is the dimen-
sion of the predicted medium transmission.

The final loss function for the cascaded CNN is the linear
combination of the above-introduced losses with the following
weights:

Ltotal = LSSIM + LMSE . (6)

The blending weights are picked empirically based on pre-
liminary experiments on the training data, which makes the
contributions of SSIM loss and MSE loss same. In addition,
these two subnetworks share the weights of the shared hidden
layers part and are optimized jointly.

D. Haze Removal

Finally, with the achieved medium transmission and global
atmospheric light, the haze-free image can be obtained by

J(x) =
I(x)−B(x)

t(x)
+B(x). (7)

where J(x) is the haze-free image, I(x) is the input hazy
image, B(x) is the estimated atmospheric light, and t(x) is the

estimated medium transmission refined by the guided image
filtering [36]. For our results shown in this paper, the filter
size of the guided image filtering is 33× 33.

In most of patch-based image dehazing methods, after
estimating the coarse medium transmission, soft matting [35]
or guided image filtering [36] is used to suppress the blocking
artifacts. Different from these methods, we observed that our
results also look pleasing even though we do not use refine-
ment post-processing (please see Figure 4(c)). This might be
because we optimize the proposed cascaded CNN using full-
size images, which reduces the effects of blocking artifacts.

In contrast to the coarse medium transmission (please
see Figure 4(b)), the refined medium transmission by the
guided image filtering [36] is more smooth and unveils more
structure information (please see Figure 4(d)). Compared with
the results in Figure 4(c), the results in Figure 4(e) have
better details and are without artifacts (please see the leaves
and parterre). The guided image filtering refinement post-
processing is beneficial to our final dehazing performance.
Thus, our results shown in this paper are achieved using the
refined medium transmission by the guided image filtering.
Besides, we do not present the estimated global atmospheric
light because it is hard to distinguish the estimated global
atmospheric light in figure format. Generally, the accuracy
of our global atmospheric light estimation reaches around
90% in spite of using a light-weight CNN architecture, which
also indicates that the task of the global atmospheric light
estimation for CNN is easy.

IV. EXPERIMENTS

In this section, we first describe the experimental set-
tings. Then, the effects of network parameter settings are
investigated. Finally, we compare the proposed method with
several the state-of-the-art single image dehazing methods,
such as regularization-based method (Meng et al. [21]), color
attenuation prior method (Zhu et al. [24]), and recent CNN-
based methods (Cai et al. [30] and Ren et al. [31]), on the
synthetic and real-world hazy images. The results presented
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(a) (b) (c) (d) (e)

Fig. 4. Examples of our results. (a) Raw hazy images. (b) The medium transmission estimated by our cascaded network. (c) The dehazed results achieved by
our method. (d) The medium transmission estimated by our cascaded network and refined by the guided image filtering [36]. (e) The dehazed results achieved
by our method using the refined medium transmission. In the medium transmission, different color represents different values (red is close to 1 and blue is
close to 0). (Best viewed on high-resolution display with zoom-in.)

in this paper are achieved by the source code provided by
authors.

A. Experimental Settings
Dataset Deep learning strategy usually benefits from big

data training. However, there is no easy way to have a amount
of the labelled data for our network training. In order to
train our cascaded CNN, we generate synthetic hazy images
using an indoor RGB-D dataset based on Equation (1) and
Equation (2).

Specifically, we assume that (i) the random global atmo-
spheric light B(x) ∈ [0.7, 1]; (ii) the atmospheric attenuation
coefficient β ranging from 0.6 to 2.8 (including haze thickness
from light to heavy); (iii) the RGB channels of a hazy image
have the same medium transmission and global atmospheric
light values. Then, we divide NYU2 Depth dataset [44] into
two parts: one part with 1300 RGB-D images for training
data synthesis and another part with 101 RGB-D images
for validation data synthesis. For each RGB-D image, we
randomly select 5 global atmospheric light and atmospheric
attenuation coefficient values to synthesize 5 hazy images. In
this way, we synthesize a training set including 1300 × 5
training samples and a validation set including 101 × 5
validation samples. Those synthetic samples include hazy
images with different haze concentration and light intensities
as well as the corresponding medium transmission maps and
global atmospheric light maps. We resize these samples to size
207 × 154 based on our limited memory. The depth images
in the NUY2 Depth dataset have been normalized to [0,1]
by us. Figure 5 presents several synthetic hazy images, the
corresponding medium transmission maps, and the haze-free
images.

Implementation In the stage of training our network, the
filter weights of each layer are initialized randomly from a
Gaussian distribution, and the biases are set to 0. The learning
rate is 0.001. The momentum parameter is set to 0.9. A batch-
mode learning method with a batch size of 32 is applied. Our

(a) (b) (c)

Fig. 5. Synthetic samples. (a) Haze-free images from NUY2 Depth dataset
[44]. (b) The synthetic medium transmission maps using the depth images
from NUY2 Depth dataset [44] and the random atmospheric attenuation
coefficient based on Equation (2). (c) Synthetic hazy images using (a), (b),
and the random global atmospheric light based on Equation (1).

cascaded network is implemented in TensorFlow framework.
Adam [45] is used to optimize our network. The network
training with the basic parameter settings shown in Figure 3
is done on a PC with a Intel(R) i7-6700 CPU @3.40GHz and
a Nvidia GTX 1080 Ti GPU.

B. Investigation of Network Parameter Settings

We mainly investigate the effects of the parameter settings
of the shared hidden layers part and the medium transmission
estimation subnetwork. Thus, we fix the network parameter
settings of the global atmospheric light estimation subnetwork.
We do not discuss the parameter settings of the global atmo-
spheric light estimation subnetwork since it already has light
enough network weights and reaches high accuracy of the
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global atmospheric light estimation. The basic filter number
of our network is 16, denoted as fn16, except for the last
layer of the medium transmission estimation subnetwork (i.e.,
1). The basic filter size used in our network is 3× 3, denoted
as fs3. The network depth for the shared hidden layer part
and the medium transmission estimation subnetwork is 4 and
7, respectively.

First, we fix other network parameter settings and then
only modify one of them. Next, we denote another 3 filter
numbers as fn8, fn32, and fn64 and another 2 filter sizes
as fs5 and fs7. Besides, we denote another 3 network depth
for the shared hidden layer part as ds3, ds7 and ds9. After
that, we denote another 2 network depth for the medium
transmission estimation subnetwork as dm3 and dm5. Here,
dm3 means 3 Concat blocks in the medium transmission esti-
mation subnetwork. Our basic network architecture includes 2
Concat blocks. The final loss values on the validation dataset
for different network parameter settings are summarized in
Table I. The final loss value for our basic network parameter
settings is marked in bold.

TABLE I
THE FINAL LOSS FOR DIFFERENT NETWORK PARAMETER SETTINGS

Network Depth Filter Number Filter Size Loss
Basic Basic Basic 0.043
Basic fn8 Basic 0.059
Basic fn32 Basic 0.033
Basic fn64 Basic 0.018
Basic Basic fs5 0.030
Basic Basic fs7 0.028
ds3 Basic Basic 0.055
ds7 Basic Basic 0.031
ds9 Basic Basic 0.023
dm3 Basic Basic 0.029
dm5 Basic Basic 0.017

Finally, we use the above-mentioned basic parameter set-
tings for our cascaded CNN based on its simplicity and
efficiency. The cascaded CNN can have varied settings for
accuracy and computation trade-off. With more filters, larger
kernel sizes and more layers, we observed that the final loss is
decreased. Nevertheless, the complexity, difficulty of training
and running time are increased.

C. Comparisons on Synthetic Images

In this part, we compare our method with the state-of-the-
art methods on synthetic hazy images. Firstly, we synthesize
a hazy image testing dataset using the same approach with
our training data generation. Several dehazed results and the
estimated medium transmission on this testing dataset are
shown in Figure 6 and Figure 7, respectively.

In Figure 6, it is obvious that our method can remove
the haze on the input hazy images and restore the color
and appearance. Moreover, our results are most close to the
ground truth images. It is almost difficult to distinguish our
results from the ground truth images. Meng et al. [21]’s
method produces over-enhanced and over-saturated results,
while Zhu et al. [24] and Cai et al. [30]’s methods have
same dehazing performance which has less effect on the input

hazy images, especially for heavy haze. Ren et al. [31]’s
method can remove the haze but still remains haze on several
regions. Besides, we also present the corresponding medium
transmission estimated by different methods in Figure 7. We
do not show the medium transmission of Ren et al. [31]
method because the code for medium transmission output is
unavailable. In addition, to demonstrate the effectiveness of the
refinement post-processing, we also show the coarse medium
transmission directly estimated by our medium transmission
estimation subnetwork.

As shown in Figure 7, all of the estimated medium transmis-
sion can indicate the concentration of haze in the hazy images.
However, observing Figure 6, the dehazed results are different,
which indicates that the accuracy of the global atmospheric
light estimation is also significant for image dehazing. In
addition, compared with the our coarse medium transmission,
the refined medium transmission is more smooth, which leads
to superior details and textures of our final dehazed results.

Furthermore, we apply the metrics of MSE, Peak Signal-to-
Noise Ratio (PSNR) and SSIM [46] to quantitatively evaluate
different methods. Besides, we also compare the running
time (RT) for different methods. The compared methods are
implemented in MATLAB and evaluated on the same machine
with our model training. Our method is implemented in Python
and our RT is calculated on the same machine with the
compared methods but with GPU acceleration. Quantitative
comparison is conducted on 50 synthetic hazy images which
are generated by the same approach with our training data
generation. Some of hazy images and the restored results have
been shown in Figure 6. Table II summarizes the average
values of the MSE, PSNR, SSIM, and RT for the image with
average size of 640 × 480. The values in bold represent the
best results.

TABLE II
QUANTITATIVE RESULTS ON SYNTHETIC HAZY IMAGES IN TERMS OF

MSE, PSNR, SSIM, AND RT.

Method MSE PSNR (dB) SSIM RT(s)
Meng et al. [21]’s 7.5742∗103 9.2841 0.7942 2.5460
Zhu et al. [24]’s 6.5163∗103 9.9908 0.8355 0.9486
Cai et al. [30]’s 5.1967∗103 10.9635 0.8474 1.6905
Ren et al. [31]’s 1.2533∗103 17.2971 0.8191 1.8785

Ours without refinement 1.0991∗103 17.7249 0.8607 0.0936
Ours 958.1711 18.3298 0.8857 0.1029

As shown in Table II, our method outperforms the compared
methods in terms of the average values of MSE, PSNR,
SSIM and RT. Moreover, our method without refinement post-
processing ranks second, which indicates that refinement post-
processing is beneficial to final dehazing performance. The
lowest MSE (highest PSNR) indicates that our results are most
closed to the corresponding haze-free images in term of image
content. The highest SSIM indicates that our results are most
close to the corresponding haze-free images in term of image
structure and texture. Besides, the speed of our method is faster
than other methods because of GPU acceleration and our light-
weight network parameter settings. Our method is fast enough
for real-time applications.



7

(a) (b) (c) (d) (e) (f) (g)

Fig. 6. Qualitative comparison on the synthetic hazy images generated by the same approach with our training data generation. (a) The synthetic hazy images.
(b) The results of Meng et al. [21]. (c) The results of Zhu et al. [24]. (d) The results of Cai et al. [30]. (e) The results of Ren et al. [31]. (f) Our results. (g)
The corresponding haze-free images.

D. Comparisons on Real-World Images

We conduct several comparisons on the real-world images
to verify the performance of the proposed method. We first
select several real-world hazy images which are usually used
to qualitatively compare and hard to be handled. We compare
the proposed method with the above-mentioned state-of-the-art
methods in Figure 8. Additionally, the corresponding medium
transmission is shown in Figure 9.

In Figure 8(b) and Figure 8(e), the results of Meng et
al. [21] and Ren et al. [31] have over-enhanced regions and
even introduce color deviation, (e.g., the regions of sky) since
these two methods tend to over-estimate the thickness of the
haze and are sensitive to sky regions. In Figure 8(c) and
Figure 8(d), the results of Zhu et al. [24] and Cai et al.
[30] have significant improvement on the sky regions, but
still have some remaining haze on the dense haze regions.
Observing Figure 8(f), our method produces good dehazing
performance in the challenging sky regions and our results
have good contrast, vivid color and visually pleasing visi-
bility, which benefits from data-driven non-linear regression.

This comparison results are in accordance with those of the
synthetic hazy images. Although our cascaded CNN is trained
on synthetic hazy images, the experimental results show that
our method can be applied for real-world hazy images as well.
To further illustrate the performance of different methods, we
also present the corresponding medium transmission estimated
by the above-mentioned methods in Figure 9. Observing
Figure 9, all of the estimated medium transmission indicates
the concentration of haze in the input hazy images. However,
the final dehazed results are different, which demonstrates
that the global atmospheric light as key component also has
significant effects on final results, even for real-world hazy im-
ages. Thus, our good dehazing performance benefits from the
joint estimation of the global atmospheric light and medium
transmission. More results of our method on challenging hazy
images are presented in Figure 10.

V. DISCUSSION AND CONCLUTION

In this paper, we have introduced a novel CNN model for
single image dehazing. Inspired by the advances on big data
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Fig. 7. Qualitative comparison on the estimated medium transmission. (a) The medium transmission estimated by Meng et al. [21]. (b) The medium
transmission estimated by Zhu et al. [24]. (c) The medium transmission estimated by Cai et al. [30]. (d) The medium transmission estimated by our network.
(e) The refined results using the guided image filtering [36] of (d) . (f) The corresponding medium transmission ground truth.

driven low-level vision problems, we formulate a cascaded
CNN with special design, which estimates the medium trans-
mission and global atmospheric light jointly. Experimental
results show that the proposed method outperforms the state-
of-the-art methods both on the synthetic and real-world hazy
images.

Regarding our method, the remaining question is that similar
with most exiting image dehazing methods, our method tends
to amplify existing image artifacts because our training dataset
is generated based on the atmospheric scattering model which
does not take artifacts into account. For future work, we
intend to suppress artifacts as an integral part in the proposed
dehazing model. Additionally, we will investigate end-to-end
networks for image dehazing where the networks directly
produce haze-free results.
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